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Abstract

Experimental data by Nakamura and Fujino [J. Nucl. Mater. 149 (1987) 80] on the x–T–pðO2Þ relations for hy-

perstoichiometric urania between 773 and 1373 K have been used for the assessment of thermodynamic properties of

the UO2–UO2:25 solid solution series. The relative partial thermodynamic functions of UO2 and UO2:25 in the UO2–O2

and UO2–UO2:25 systems have been calculated using the Gibbs–Duhem equation. The results enable one to determine

activity–composition relations and other thermodynamic mixing properties of UO2þx and thermodynamic properties of

the UO2:25 end-member. The UO2 activity and its entropic contribution have positive deviations from the mole fraction

of the UO2 end-member in the entire stability range of urania except the near stoichiometric region. A peculiar property

of urania are non-zero values of these functions at the second end-member composition. Beyond the near stoichiometric

region, the entropy of mixing of UO2þx is approximately half of that of an ideal one-site solid solution, and the enthalpy

of mixing is positive. � 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Uranium dioxide is the base component of the nat-

ural mineral uraninite and of fuel for nuclear power

stations. Its composition can have both an excess and

deficiency of oxygen relative to stoichiometric UO2. The

relationships between composition and oxygen partial

pressure pðO2Þ of hyperstoichiometric UO2þx were stud-

ied by many investigators. The number of experimental

determinations of the x–T–pðO2Þ relations exceeds 2000
[1,2]. The x–T–pðO2Þ relations were used for assessment

of the relative partial thermodynamic functions of oxy-

gen, DGðO2Þ, DSðO2Þ and DHðO2Þ, for statistic ther-

modynamic modelling and for characterisation of defects

in the structure [3–5]. They were also used for the cal-

culation of thermodynamic properties of the reaction

UO2 þ 0:5xO2 ¼ UO2þx [6,7]. Lindemer and Bessmann

[1] have carried out the thermodynamic analysis of the

available x–T–pðO2Þ data considering urania as a solid

solution between UO2 and a more oxygen-rich uranium

oxide with O/U ratios above 2. They conclude that

UO2þx may be regarded as an ideal solid solution of the

series UO2–U4O9 and UO2–U3O7 at lower- and higher-

oxygen activities, respectively.

In general, the available x–T–pðO2Þ data enable one

to obtain the full thermodynamic description of the

UO2þx solid solution series including the assessment of

their real thermodynamic mixing properties, in particu-

lar activity–composition relations, which are necessary

for thermodynamic calculations of the phase equilibria

involving urania. With the compositional dependence of

the relative partial functions of oxygen in UO2þx,

DUðO2Þ, we can use the Gibbs–Duhem equation for

evaluating those functions of the second component,

UO2, in the UO2–O2 system. With the latter DUðUO2Þ–
composition relations, we can use the same approach for

evaluating relative partial functions, DUðUO2þbÞ, of the
second end-member in the UO2–UO2þb solid solution

series. This will be demonstrated for the experimental

x–T–pðO2Þ data by Nakamura and Fujino [2]. These

researchers have carried out 636 measurements of the

partial pressure pðO2Þ of UO2þx with 0:003 < x < 0:23 at
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773–1373 K using the solid state emf technique. Their

investigation differs from other analogous studies by

larger quantities of experimental data in broader com-

positional and temperature ranges. The comparison with

data of other studies ([2], Fig. 8) has shown that the

derived x–T–pðO2Þ relations reproduce quite well the

available experimental data in the studied temperature

and composition ranges constituting the upper limit

data with the highest x values at given pðO2Þ. The ex-

trapolation of the derived x–T–pðO2Þ relations to higher

temperatures is in agreement with high-temperature data

[8] which enables the applicability of the derived

x–T–pðO2Þ relations up to 1673 K. The dependence of

the relative partial thermodynamic properties of O2 on

the UO2þx composition calculated by Nakamura and

Fujino [2] is used in this paper for an assessment of the

thermodynamic mixing properties of the hyperstoichio-

metric urania solid solution.

2. Relative partial thermodynamic functions

According to Nakamura and Fujino [2], the relative

partial functions DUðO2Þ of oxygen in UO2þx with

0:003 < x < 0:23 at temperatures from 773 up to 1373 K

are described by the equations

DGðO2Þ ¼ DHðO2Þ � TDSðO2Þ; ð1Þ

DSðO2Þ ¼ DS0 þ DCpðO2Þ ln T ; ð2Þ

DHðO2Þ ¼ DH 0 þ DCpðO2ÞT ; ð3Þ

DCpðO2Þ; JK�1 mol�1 ¼ �43:4642� 52:171 ln x

� 11:4939ðln xÞ2

� 1:5896ðln xÞ3; ð4Þ

DS0ðO2Þ; JK�1 mol�1 ¼ �93:807þ 122:155 ln x

þ 22:533ðln xÞ2

þ 5:951ðln xÞ3; ð5Þ

DH 0ðO2Þ; kJmol�1 ¼ 373:411þ 120:606 ln x

þ 4:4304ðln xÞ2

þ 1506:367ðln xÞ�1

þ 1050:900ðln xÞ�2
: ð6Þ

This representation of DSðO2Þ and DHðO2Þ is based on

the assumption that DCpðO2Þ for each composition x

is independent of T. The dependence of DGðO2Þ ¼
RT ln aðO2Þ on x and T is shown in Fig. 1.

If the compositional dependence of the relative

thermodynamic partial function DUðAÞ for a component

A in a binary system is known (U ¼ H , S, G, Cp), that

for another component B can be determined using the

Gibbs–Duhem equation

DUðBÞ ¼ DU0ðBÞ �
Z N

N0

1� N
N

dDUðAÞ; ð7Þ

where N is the mole fraction of the component B,

DU0ðBÞ is the value of DUðBÞ in the phase of the N0

composition.

UO2þx may be considered as a urania phase of

variable composition U1�NO2 of the binary system

UO2–O2 with the mole fraction N of the component O2

being equal to x=ð2þ xÞ. Taking into account that

DU0ðUO2Þ ¼ 0 at x ¼ 0, we derive

DUðUO2Þ ¼ � 1

2

Z x

x¼0

xdDUðO2Þ: ð8Þ

DCpðO2Þ, DS0ðO2Þ and DH 0ðO2Þ expressed in Eqs.

(1)–(4) as functions of ln x can also be expressed with

sufficient accuracy by means of a polynomial of the type

DU0ðO2Þ ¼
X
i

aU;ixni ; ð9Þ

where aU;i are coefficients of this polynomial, ni are ex-

ponents and n1 ¼ 0. Then the relative partial thermo-

dynamic functions DUðO2Þ are expressed by

DUðO2Þ ¼
X
i

a�U;ix
ni ; ð10Þ

Fig. 1. Relative partial Gibbs energy of oxygen, DGðO2Þ in

UO2þx according to Nakamura and Fujino [2] (––), the ex-

trapolation of these data (– – –) and the experimental data of

Haggemark and Broli [8] at 1673 K (j).
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where a�U;i are determined by coefficients aU;i for DU0ðO2Þ
using relations given in Table 1. Coefficients aU;i given in

Table 2 were calculated using values of DGðO2Þ for

stable UO2þx at 773–1373 K with composition and

temperature steps being equal to 0.05 and 100 K, respec-

tively. The standard deviation of such representation of

DGðO2Þ from the analytical expression of Nakamura

and Fujino [2] is 47 Jmol�1.

Substitution of Eq. (10) for Eq. (8) allows us to ex-

press the dependence of DUðUO2Þ on x. Using Eqs. (1)–

(3) and Eqs. (8) and (9) we obtain general equations for

the relative partial functions

DUðUO2Þ ¼ � 1

2

X
i

a�U;i

ni
ni þ 1

xniþ1: ð11Þ

Now applying the Gibbs–Duhem equation to UO2þx

as to a solid solution of the UO2–UO2þb series and

substituting both N ¼ x=b and DUðUO2Þ according to

Eq. (11) we can determine the relative partial functions

for the UO2þb end-member

DUðUO2þbÞ ¼ DU0 UO2þbð Þ

þ 1

2

X
i

a�U;i

ni
ni þ 1

xniþ1
0

��
� xniþ1

�

� b xni0ð � xniÞ
�
; ð12Þ

where DU0 UO2þbð Þ is the value of this relative partial

function at x ¼ x0.
According to the graphical representation in the pa-

per by Nakamura and Fujino [2] the limits in composi-

tion of urania in the equilibria UO2þx þU4O9�y between

673 and 1440 K can be expressed by the equation

x0 ¼ �8:2655� 1:4974� 10�2T

þ 2:28752� 10�6T 2 þ 0:66781T 1=2: ð13Þ

The relative partial functions of the UO2 end-mem-

ber allow us to calculate its activity in the UO2þx solid

solution series

aðUO2Þ ¼ expðDGðUO2Þ=RT Þ: ð14Þ

It is then also possible to separate the entropic contri-

bution, aSðUO2Þ, and the enthalpic contribution,

aHðUO2Þ, to the activity of UO2

aSðUO2Þ ¼ expð�DSðUO2Þ=RÞ; ð15Þ

aHðUO2Þ ¼ expðDHðUO2Þ=RT Þ: ð16Þ

There are a number of uranium oxides with U=O > 2

which can be considered as potential end-members of

the UO2þx solid solution series. According to the ex-

perimental data of Roberts and Walter [7], the associa-

tion of UO2þx with x < 0:25 and U4O9�y is stable below

1396 K, urania with x ¼ 0:245 is in equilibrium with

U4O9 and UO2:6 at 1396 K, and urania with x � 0:25 is

in equilibrium with UO2:6 at higher temperatures up to

1673 K. Budnikov et al. [9] found that heating of UO2:666

in air led to the formation of two-phase associations,

UO2:25 þUO2:6 at 1773 K and UO2:25 þUO3:6 at 2973

K. The constant composition of urania in association

both with UO2:6 and UO3:6 in the broad temperature

range can be considered as an evidence that UO2:25 is

the composition limit of urania being the second end-

member of this solid solution series. It contradicts the

proposed U–O phase diagrams (for instance [10]) where

urania in equilibrium with UO2:6 has the composition

x > 0:25. However, the acceptance of UO2:25 as a solid

solution end-member enables us to explain the mismatch

noted in [10] between the phase boundary and oxygen

isobars for UO2þx and UO2þx þUO2:6 in the x–T dia-

gram at temperatures above 1400 K. The abrupt change

of pðO2Þ at x � 0:25 which is characteristic of near end-

member compositions as is seen by the example of

UO2�x and UO2þx with x � 0 can be responsible for this

mismatch.

Fig. 2 shows the aðUO2Þ–x and aSðUO2Þ–x relations

for UO2þx as a phase of the system UO2–O2. It will

be noted that these assessments do not depend on the

choice of the second solid solution end-member. UO2þx

as a solid solution of the UO2–UO2:25 series clearly de-

viates from the Raoult rule. It is especially noteworthy

Table 1

Expressions for the parameters U and a�U;i

U a�U;i

Cp aC;i
S aS;i þ aC;i ln T
H aH;i þ aC;iT
G aH;i � aS;iT þ aC;iT ð1� ln T Þ

Table 2

Coefficients aU;i of Eq. (10) for evaluation of thermodynamic

functions of O2 in urania UO2þx (aC;i and aS;i in JK�1 mol�1,

aH;i in kJmol�1)

i ni aC;i aS;i aH;i

1 0 �43.4642 �93.807 373.411

2 1 13.9859 380.076 �3981.508

3 2 0 0 4006.248

4 1/2 �313.072 �726.702 5822.553

5 �1/2 6.5004 �32.324 16.8036

6 1/3 277.138 512.063 �4321.283

7 �1/3 12.532 �82.589 �111.7484

ra 0.01 0.1 0.1

a Standard deviation from assessments of DU in the paper by

Nakamura and Fujino [2].
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that aðUO2Þ and aSðUO2Þ differ from zero at x ¼ 0:25.
This is not surprising because all uranium oxides in-

cluding UO2þx and richer in oxygen like UO2:666 have

non-zero values of aðUO2Þ, where the latter is deter-

mined by the equilibrium constant K ¼ aðUO2ÞpðO2Þ of
the reaction UO2þy ¼ UO2 þ 0:5O2 at aðUO2þyÞ ¼ 1. In

the system U–O2, aðUO2Þ equals unity for stoichiomet-

ric urania, decreases in all non-stoichiometric com-

pounds with increasing or decreasing U/O ratio and is

zero only in pure uranium and oxygen. Such activity–

composition relations must be common to all binary

M–O systems with non-stoichiometric compounds as

exemplified by the Fe–O system [11]. A non-zero activity

of a component in the standard state of the second

component was found in some other binary solid

solutions, for instance in Fe3O4–ZnFe2O4 [12,13] and

Fe3O4–CoFe2O4 [14]. These solid solutions cannot be

described by existing thermodynamic models of solu-

tions and must be referred to a special type.

The enthalpic contribution aHðUO2Þ increases with

increasing x from unity at x ¼ 0 up to 1.35 at x near 0.2

and then decreases. aðUO2:25Þ and aSðUO2:25Þ change

from 0 at x ¼ 0 up to 1 at x ¼ 1.

3. Integral functions of mixing

Integral functions of mixing UM of the UO2þx solid

solutions can be determined using the relative partial

functions DU of the end-members UO2 and UO2þb

UMðUO2þxÞ ¼ ð1� NÞDUðUO2Þ þ NDUðUO2þbÞ: ð17Þ

Substituting by N ¼ x=b and by expressions for

DUðUO2Þ and DUðUO2þbÞ according to Eqs. (11) and

(12) leads to

UMðUO2þxÞ ¼
1

2

X
i

a�U;i

1

ni þ 1
xðxni � bniÞ: ð18Þ

The heat capacity CpðUO2þxÞ of the solid solutions

UO2–UO2:25 (Fig. 3) shows a positive deviation from

Fig. 2. Activities aðUO2Þ, aðUO2:25Þ and their entropic contri-

butions in UO2þx at 773 K (a) and 1673 K (b). The Lindemer

and Bessmann [1] estimations of aðUO2Þ are reduced to the

UO2–UO2:25 system.

Fig. 3. Deviation of Cp from additivity and the entropy of

mixing, SM in the UO2–UO2:25 solid solutions at 773 and 1373

K.

68 V.A. Kurepin / Journal of Nuclear Materials 303 (2002) 65–72



additivity with the maximum displaced to the first end-

member. The assumption of DCpðO2Þ to be independent

of temperature as already accepted by Nakamura and

Fujino [2] results in a constant CM
p ðUO2þxÞ at different

temperatures. The entropy of mixing SMðUO2þxÞ is al-

most symmetric with respect to N at lower temperatures.

Non-additivity of CpðUO2þxÞ results in an increase of

SMðUO2þxÞ with temperature. The enthalpy of mixing

HMðUO2þxÞ is positive and rather small (Fig. 4). Max-

ima of these functions are displaced to the UO2 end-

member.

4. Thermodynamic mixing parameters

For an analysis of the entropy of mixing SM and

enthalpy of mixing HM of urania we can use the fol-

lowing relations:

SM ¼ �aRðN lnN þ ð1� NÞ lnð1� NÞÞ; ð19Þ

HM ¼ W HNð1� NÞ; ð20Þ

where N is the mole fraction of the second component,

UO2:25, being equal to 4x. The factor a denotes the ratio

of SM between real and ideal solutions, respectively. The

compositional dependence of W H reflects features of HM

because W H is a constant in regular solutions and a

linear function of composition in subregular solutions.

Fig. 5 shows that a and W H for UO2þx are non-linear

functions of x which depend on temperature. Urania in

the near stoichiometric region has very large values of a

andW H which decrease considerably with increasing x.

Urania with x > 0:02–0.04 has almost linear composi-

tional dependences of a and W H decreasing weakly with

increasing x. Values of a being close to 0.5 show that

SMðUO2þxÞ is about half of SM of an ideal one-site solid

solution. A near linear dependence of W H on x indicates

that HMðUO2þxÞ can be expressed at constant tempera-

ture by an asymmetric Margules model. In particular,

it can be expressed by W H ¼ 1:96–8.01N kJmol�1 at

1373 K.

5. Integral thermodynamic properties

The difference between some integral functions of

hyperstoichiometric urania, UðUO2þxÞ, and that of the

compositionally equivalent mechanical mixture of UO2

and O2 can be expressed by means of the relative partial

functions of UO2 and O2

UðUO2þxÞ � UðUO2Þ �
x
2
UðO2Þ

¼ DUðUO2Þ þ
x
2
DUðO2Þ: ð21Þ

Fig. 5. Compositional dependence of the ratios a¼SMðUO2þxÞ=
SM
id (a) and W H ¼HMðUO2þxÞ=ðNð1�NÞÞ (b) in the UO2–UO2:25

solid solutions.

Fig. 4. Enthalpy of mixing, HM, of the UO2–UO2:25 solid so-

lutions at 773 and 1373 K.
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Substituting DUðO2Þ and DUðUO2Þ from Eqs. (10) and

(11), we obtain an expression for some integral proper-

ties of urania, (UO2þx)

UðUO2þxÞ ¼ UðUO2Þ þ
x
2

UðO2Þ þ
X
i

a�U;i

1

ni þ 1
xniþ1:

ð22Þ
Calculated thermodynamic properties for stable

UO2þx in the temperature range from 800 up to 1400 K

are given in Table 3. Thermodynamic properties of

O2 and UO2 for these calculations were taken from

[15]. The difference between thermodynamic proper-

ties of hyperstoichiometric and stoichiometric urania,

UðUO2þxÞ � UðUO2Þ, where U stands for heat capacity

Table 3

Thermodynamic properties of UO2þx (Cp and S0 in JK�1 mol�1,

Df H 0 and Df G0 in kJmol�1)

T

(K)

x Cp S0 Df H 0 Df G0

800 0.003 81.98 48 �1079.9 �945.7

0.050 84.66 51.07 �1086.6 �954.8

0.100 86.57 53.57 �1094.1 �964.3

0.108 86.91 53.99 �1095.7 �966.2

900 0.003 83.47 51.92 �1079.5 �929.3

0.050 86.16 55.15 �1086.0 �938.7

0.100 88.08 57.70 �1093.4 �948.4

0.145 89.69 59.58 �1101.2 �957.9

1000 0.003 84.88 55.20 �1081.7 �912.5

0.050 87.58 58.57 �1088.0 �922.2

0.100 89.52 61.18 �1095.3 �932.1

0.150 91.13 63.08 �1103.1 �941.7

0.166 91.72 63.66 �1106.3 �945.5

1100 0.003 86.27 58.02 �1085.4 �895.4

0.050 88.98 61.52 �1091.5 �905.3

0.100 90.93 64.18 �1098.7 �915.4

0.150 92.56 66.10 �1106.4 �925.2

0.180 93.42 66.93 �1111.1 �930.9

1200 0.003 87.64 60.48 �1084.1 �878.1

0.050 90.36 64.11 �1090.1 �888.4

0.100 92.32 66.81 �1097.1 �898.7

0.150 93.96 68.75 �1104.7 �908.7

0.193 95.10 69.80 �1111.0 �916.2

1300 0.003 89.02 62.68 �1082.7 �861.0

0.050 91.75 66.42 �1088.4 �871.6

0.100 93.72 69.17 �1095.4 �882.2

0.150 95.36 71.12 �1102.9 �892.2

0.200 96.79 72.38 �1110.8 �901.7

0.212 97.05 72.55 �1112.3 �903.5

1400 0.003 90.41 64.65 �1081.1 �844.1

0.050 93.15 68.50 �1086.7 �855.0

0.100 95.12 71.29 �1093.5 �865.8

0.150 96.77 73.26 �1101.0 �876.0

0.200 98.21 74.52 �1108.8 �885.5

0.242 99.23 75.05 �1115.1 �892.6

Fig. 6. Difference in heat capacity, DCp, and the difference in

entropy, DS0 between non-stoichiometric (UO2þx) and stoi-

chiometric (UO2) urania at 773 and 1673 K.

Fig. 7. Difference in enthalpy of formation, DfH 0 between non-

stoichiometric (UO2þx) and stoichiometric (UO2) urania at 773

and 1673 K.
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Cp, entropy S0 and enthalpy of formation Df H 0 is shown

in Figs. 6 and 7, respectively. According to the experi-

mental data [16], the difference between CpðUO2:254Þ and
CpðUO2:017Þ changes from 6.33 JK�1 mol�1 at 800 K up

to 11.08 JK�1 mol�1 at 1000 K. Our calculation gives an

intermediate value (�8 JK�1 mol�1).

The extrapolation of DGðO2Þ up to x ¼ 0:25 and

T down to 298.15 K allows to assess the thermody-

namic properties of the UO2:25 end-member, at standard

conditions: Cp;298 ¼ 72:3 JK�1 mol�1, S0
298 ¼ 74:9 JK�1

mol�1, Df H 0
298¼�1126:1 kJ mol�1 and Df G0

298¼�1075:0
kJmol�1. The heat capacity of UO2:25 in the range 298–

1373 K is expressed by

Cp ¼ 69:98þ 1:584� 10�2T � 1:792� 106T�2

� 3:076� 102T�0:5 JK�1 mol�1: ð23Þ

Fig. 8 shows that the thus calculated values for the heat

capacity are close to the available experimental data for

UO2:25 [16,17]. Our assessment of the thermodynamic

properties of the virtual end-member can be compared

with standard thermodynamic properties of cubic b-
UO2:25 which is stable above 348 K: S0

298 ¼ ð85:4	 0:2Þ
JK�1 mol�1, Df H 0

298 ¼ �ð1127:4	 1:7Þ kJmol�1 and

Df G0
298 ¼ �ð1069	 1:7Þ kJmol�1 [18]. Values of Df H 0

298

are very close, while values of S0
298 and Df G0

298 differ

between cubic b-UO2:25 and the UO2:25 end-members

values calculated from experimental data for the stable

UO2þx solid solutions. A better agreement is at higher

temperatures where the compositional stability ranges

are larger.

6. Conclusions

The x–T–pðO2Þ relations for hyperstoichiometric

UO2þx have been exploited as a source of thermo-

dynamic information on mixing properties of non-

stoichiometric solid solutions in the UO2–UO2þb series.

UO2:25 can be accepted as high-oxygen solid solution

end-member because high-temperature urania most rich

in oxygen has this composition in a broad temperature

range.

The x–pðO2Þ relationships for UO2þx have been used

for the determination of the relative partial functions of

UO2 in the UO2–O2 system using the Gibbs–Duhem

equation and then for the determination of these func-

tions for UO2:25 in the UO2–UO2:25 system. The activ-

ity aðUO2Þ exceeds the molar fraction of UO2 in these

solid solutions considerably, and has a non-zero value

for the UO2:25 end-member. The latter behavior is pe-

culiar for spinels of the Fe3O4–CoFe2O4 and Fe3O4–

ZnFe2O4 series and all these solid solutions thereof

cannot be described by means of regular, subregular or

other known solid solution models but must refer to a

special type. UO2þx as a solid solution of the UO2–

UO2:25 series has a positive deviation of the heat ca-

pacity from additivity and a small positive enthalpy of

mixing. Its entropy of mixing is approximately equal to

half of the entropy of mixing of an ideal one-site solid

solution, SM
id The near stoichiometric urania with very

small values of x has very large ratios SM=SM
id and

HM=ðNð1� NÞÞ which decrease considerably with in-

creasing x.
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